Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 9027, 2024 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641640

RESUMEN

Copper-doped ZnO nanoparticles with the formula Zn1-x(Cu)O, where x = 0.0, 0.03, 0.05, and 0.07 were produced using the co-precipitation process. Physical, chemical, and structural properties were properly examined. Powdered X-ray diffraction (P-XRD) patterns revealed the formation of hexagonal wurtzite crystal structure in all samples, through atomic substitutional incorporation in the Cu-doped ZnO lattice. The presence of Cu ions and their dissolution in the host ZnO crystal structure was supported by FT-IR spectra. HR-TEM images were used to assess the average size, morphology, and shape regularity of the synthesized samples. The form and homogeneity of the ZnO changed when Cu ions were substituted, as evidenced by FE-SEM/EDX analysis. The presence of copper signals in the Cu-doped samples indicates that the doping was successful. The decrease in zeta potential with an increased copper doping percentage designates that the nanoparticles (NPs) are more stable, which could be attributed to an increase in the ionic strength of the aqueous solution. The synthesized NPs were evaluated for their substantial in vitro antioxidant properties. In addition, the antimicrobial efficacy of the materials was tested against pathogenic microorganisms. Regarding the anti-diabetic activity, the 7Cu ZnO sample showed the highest inhibitory effect on the α-amylase enzyme. No variations were observed in the activities of the acetylcholinesterase enzyme (AChE) and proteinase enzymes with ZnO and samples doped with different concentrations of Cu. Therefore, further studies are recommended to reveal the in-vitro anti-diabetic activity of the studied doped samples. Finally, molecular docking provided valuable insights into the potential binding interactions of Cu-doped ZnO with α-amylase, FabH of E. coli, and Penicillin-binding proteins of S. aureus. These outcomes suggest that the prepared materials may have an inhibitory effect on enzymes and hold promise in the battle against microbial infections and diabetes.


Asunto(s)
Óxido de Zinc , Óxido de Zinc/farmacología , Óxido de Zinc/química , Simulación del Acoplamiento Molecular , Espectroscopía Infrarroja por Transformada de Fourier , Cobre/química , Escherichia coli , Staphylococcus aureus , Acetilcolinesterasa , Iones/farmacología , alfa-Amilasas
2.
Medicina (Kaunas) ; 60(3)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38541227

RESUMEN

Background and Objectives: Enterococcus faecalis (E. faecalis) is a primary pathogen responsible for dental abscesses, which cause inflammation and pain when trapped between the crown and soft tissues of an erupted tooth. Therefore, this study aims to use specific phages as an alternative method instead of classical treatments based on antibiotics to destroy multidrug-resistant E. faecalis bacteria for treating dental issues. Materials and Methods: In the current study, twenty-five bacterial isolates were obtained from infected dental specimens; only five had the ability to grow on bile esculin agar, and among these five, only two were described to be extensive multidrug-resistant isolates. Results: Two bacterial isolates, Enterococcus faecalis A.R.A.01 [ON797462.1] and Enterococcus faecalis A.R.A.02, were identified biochemically and through 16S rDNA, which were used as hosts for isolating specific phages. Two isolated phages were characterized through TEM imaging, which indicated that E. faecalis_phage-01 had a long and flexible tail, belonging to the family Siphoviridae, while E. faecalis_phage-02 had a contractile tail, belonging to the family Myoviridae. Genetically, two phages were identified through the PCR amplification and sequencing of the RNA ligase of Enterococcus phage vB_EfaS_HEf13, through which our phages shared 97.2% similarity with Enterococcus phage vB-EfaS-HEf13 based on BLAST analysis. Furthermore, through in silico analysis and annotations of the two phages' genomes, it was determined that a total of 69 open reading frames (ORFs) were found to be involved in various functions related to integration excision, replication recombination, repair, stability, and defense. In phage optimization, the two isolated phages exhibited a high specific host range with Enterococcus faecalis among six different bacterial hosts, where E. faecalis_phage-01 had a latent period of 30 min with 115.76 PFU/mL, while E. faecalis_phage-02 had a latent period of 25 min with 80.6 PFU/mL. They were also characterized with stability at wide ranges of pH (4-11) and temperature (10-60 °C), with a low cytotoxic effect on the oral epithelial cell line at different concentrations (1000-31.25 PFU/mL). Conclusions: The findings highlight the promise of phage therapy in dental medicine, offering a novel approach to combating antibiotic resistance and enhancing patient outcomes. Further research and clinical trials will be essential to fully understand the therapeutic potential and safety profile of these bacteriophages in human populations.


Asunto(s)
Bacteriófagos , Humanos , Bacteriófagos/genética , Enterococcus faecalis/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Absceso/terapia , Temperatura
3.
Arch Pharm (Weinheim) ; : e2300738, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38466125

RESUMEN

The targeted compounds were prepared using both (9H-fluoren-9-ylidene)hydrazine (1) and 10H-phenothiazine (2) as starting materials. The treatment of 1 or 2 with different isocyanates afforded the title compounds 7a-d, 8a, and 8b in excellent yield. All compounds were characterized and ascertained by infrared, nuclear magnetic resonance, and elemental analyses as well as single-crystal X-ray diffraction. The antimicrobial efficiency of all was tested in vitro, and a noticeable inhibition activity against Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Candida albicans was obtained by compounds 7a, 7b, 8a, and 8b. Moreover, the biofilm mechanism activity was strongly inhibited by compounds 7b and 8b for all bacterial pathogens, with a percentage ratio of more than 55%. The findings from the molecular docking simulation revealed that compounds 7a, 7b, 8a, and 8b exhibited favorable binding energies and interacted effectively with the active sites of sterol 14-demethylase, dihydropteroate synthase, gyrase B, LasR (major transcriptional activator of P. aeruginosa), and carbapenemase for C. albicans, S. aureus, B. subtills, K. pneumoniae, and P. aeruginosa, respectively. These results suggest that the compounds have the potential to inhibit the activity of these enzymes and demonstrate promising antimicrobial properties. Moreover, the in silico evaluation of drug likeness and absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiles for compounds 7a, 7b, 8a, and 8b demonstrated their compatibility with Lipinski's, Ghose's, Veber's, Muegge's, and Egan's rules. These findings suggest that these compounds possess favorable physicochemical properties, making them promising candidates for continued drug development efforts.

4.
Sci Rep ; 14(1): 565, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38177275

RESUMEN

To combat infections, silver was used extensively in biomedical field but there was a need for a capping agent to eliminate its cytotoxic effects. In this study, polymeric calcium polyphosphate was doped by silver with three concentrations 1, 3 or 5 mol.% and were characterized by TEM, XRD, FTIR, TGA. Moreover, cytotoxicity, antibacterial, cell migration and DNA fragmentation assays were done to assure its safety. The results showed that the increase in silver percentage caused an increase in particle size. XRD showed the silver peaks, which indicated that it is present in its metallic form. The TGA showed that thermal stability was increased by increasing silver content. The antibacterial tests showed that the prepared nanoparticles have an antibacterial activity against tested pathogens. In addition, the cytotoxicity results showed that the samples exhibited non-cytotoxic behavior even with the highest doping concentration (5% Ag-CaPp). The cell migration assay showed that the increase in the silver concentration enhances cell migration up to 3% Ag-CaPp. The DNA fragmentation test revealed that all the prepared nanoparticles caused no fragmentation. From the results we can deduce that 3% Ag-CaPp was the optimum silver doped calcium polyphosphate concentration that could be used safely for medical applications.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Plata/farmacología , Calcio , Fragmentación del ADN , Extractos Vegetales , Antibacterianos/farmacología , Calcio de la Dieta , Movimiento Celular , Pruebas de Sensibilidad Microbiana
5.
J Genet Eng Biotechnol ; 21(1): 97, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37815647

RESUMEN

BACKGROUND: Multidrug-resistant (MDR) bacteria are acknowledged as one of the main factors contributing to chronic illnesses and fatalities globally. Numerous diseases, including bloodstream infections, pneumonia, urinary tract infections, and surgical site infections, can be brought on by MDR bacteria. Therefore, a crucial topic of continuing research is the development of a novel and different treatment for MDR microbial pathogens. This work is introduce an alternative method for elimination of MDR bacterial isolates which are causative agents of urinary tract infection among people in Egypt. In our study, we need a novel strategy to combat MDR bacteria by green-synthesized metal nanoparticles (MNPs). That is due to the ability of MNPs to penetrate the cell wall and the cell membrane of gram-positive and gram-negative bacteria. METHODS: Clinical isolates of MDR bacteria had their antibiotic susceptibility assessed before being molecularly identified using 16 s rRNA, sequencing, and phylogenetic analysis. Also, genetic profiles of isolated strains were performed using ISSR and SDS-PAGE. Finally, characterized plant-mediated silver nanoparticles derived from lemon and pomegranate peel extracts were evaluated against isolated multidrug-resistant bacterial stains. RESULTS: In our present trial, one-hundred urine samples were collected from 71 females and 29 males complaining of UTI (urinary tract infection) symptoms. One-hundred microbial isolates were isolated, including 88-g negative and only 8-g positive bacteria in addition to four yeast isolates (Candida species). A total of 72% of the isolated bacteria showed MDR activity. The most prevalent MDR bacterial isolates (Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii, Enterococcus faecalis, and Klebsiella pneumoniae) were identified through 16S rDNA PCR sequencing as with accession numbers OP741103, OP741104, OP741105, OP741106, and OP741107, respectively. Lemon and pomegranate-mediated silver nanoparticles [Ag-NPs] were characterized by UV spectroscopy, FTIR, XRD, and TEM with average size 32 and 28 nm, respectively. Lemon and pomegranate-mediated silver nanoparticles [Ag-NPs] showed an inhibitory effect on the selected five MDR isolates at MIC 50 and 30 µg/mL, respectively. These common bacterial isolates were also genetically examined using ISSR PCR, and their total protein level was evaluated using SDS-PAGE, showing the presence of distinct genetic and protein bands for each bacterial species and emphasizing their general and protein composition as a crucial and essential tool in understanding and overcoming MDR behavior in UTI patients. CONCLUSIONS: Lemon and pomegranate-mediated silver nanoparticles [Ag-NPs] were found to have an inhibitory effect on MDR isolates. Therefore, the study suggests that [Ag-NPs] could be a potential treatment for MDR UTI infections caused by the identified bacterial species.

6.
Front Bioeng Biotechnol ; 11: 1165465, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37091329

RESUMEN

Lactate dehydrogenase (LDH, EC 1.1.1.27) is one of the vital glycolytic conditions, especially during anaerobic conditions. It is a significant diagnostic, prognostic, and monitoring biomarker parameter. A 950-bp DNA fragment containing the gene (LDH) encoding LDH was amplified from Bacillus cereus NRC1. The deduced amino acid sequence reveals that B. cereus LDH (Bc-LDH) is highly homologous to the LDHs of Bacillus organisms. All LDH enzymes have a significant degree of conservation in their active site and several additional domains with unidentified functions. The gene for LDH, which catalyzes lactate synthesis, was cloned, sequenced (accession number: LC706200.1), and expressed in Escherichia coli BL21 (DE3). In this investigation, Bc-LDH was purified to homogeneity with a specific activity of 22.7 units/mg protein and a molecular weight of 35 kDa. It works optimally at pH 8.0. The purified enzyme was inhibited by FeCl2, CuCl2, ZnCl2, and NiCl, whereas CoCl2 was found to boost the activity of Bc-LDH. The molecular docking of the 3D model of the Bc-LDH structure with a natural inhibitor, mangiferin, demonstrated excellent LDH inhibition, with a free binding energy of -10.2 kcal/mol. Moreover, mangiferin is a potent Bc-LDH inhibitor that inhibits Bc-LDH competitively and has one binding site with a Ki value of 0.075 mM. The LDH-mangiferin interaction exhibits a low RMSF value (>1.5 Å), indicating a stable contact at the residues. This study will pave the way for more studies to improve the understanding of mangiferin, which could be considered an intriguing candidate for creating novel and improved LDH inhibitors.

7.
J Genet Eng Biotechnol ; 20(1): 121, 2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-35960448

RESUMEN

BACKGROUND: The production of industrial enzymes such as xylanase using sufficient cost-effective substrates from potent microorganisms is considered economically feasible. Studies have reported castor cake (Ricinus communis) as the most potent and inexpensive alternative carbon source for production of xylanase C by using Aspergillus terreus (A. terreus). RESULTS: A. terreus strain RGS Eg-NRC, a local isolate from agro-wastes, was first identified by sequencing the internal transcribed spacer region of a nuclear DNA encoding gene cluster deposited in GenBank (accession number MW282328). Before optimization of xylanase production, A. terreus produced 20.23 U/g of xylanase after 7 days using castor cake as a substrate in a solid-state fermentation (SSF) system that was employed to achieve ricin detoxification and stimulate xylanase production. Physicochemical parameters for the production of xylanase were optimized by using a one-variable-at-a-time approach and two statistical methods (two-level Plackett-Burman design and central composite design, CCD). The maximum xylanase yield after optimization was increased by 12.1-fold (245 U/g). A 60-70% saturation of ammonium sulfate resulted in partially purified xylanase with a specific activity of 3.9 IU/mg protein. At 60 °C and pH 6, the partially purified xylanase had the highest activity, and the activation energy (Ea) was 23.919 kJmol. Subsequently, antioxidant capacity and cytotoxicity tests in normal Ehrlich ascites carcinoma human cells demonstrated xylooligosaccharides produced by the xylanase degradation of xylan as a potent antioxidant and moderate antitumor agent. Further investigations with sodium dodecyl sulfate polyacrylamide gel electrophoresis then determined the molecular weight of partially purified xylanase C to be 36 kDa. Based on the conserved regions, observations revealed that xylanase C belonged to the glycosyl hydrolase family 10. Next, the xylanase-encoding gene (xynC), which has an open reading frame of 981 bp and encodes a protein with 326 amino acids, was isolated, sequenced, and submitted to the NCBI GenBank database (accession number LC595779.1). Molecular docking analysis finally revealed that Glu156, Glu262, and Lys75 residues were involved in the substrate-binding and protein-ligand interaction site of modeled xylanase, with a binding affinity of -8.7 kcal. mol-1. CONCLUSION: The high production of safe and efficient xylanase could be achieved using economical materials such as Ricinus communis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...